Abstract

Internal repetition within proteins has been a successful strategem on multiple separate occasions throughout evolution. Such protein repeats possess regular secondary structures and form multirepeat assemblies in three dimensions of diverse sizes and functions. In general, however, internal repetition affords a protein enhanced evolutionary prospects due to an enlargement of its available binding surface area. Constraints on sequence conservation appear to be relatively lax, due to binding functions ensuing from multiple, rather than, single repeats. Considerable sequence divergence as well as the short lengths of sequence repeats mean that repeat detection can be a particularly arduous task. We also consider the conundrum of how multiple repeats, which show strong structural and functional interdependencies, ever evolved from a single repeat ancestor. In this review, we illustrate each of these points by referring to six prolific repeat types (repeats in β-propellers and β-trefoils and tetratricopeptide, ankyrin, armadillo/HEAT, and leucine-rich repeats) and in other less-prolific but nonetheless interesting repeats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.