Abstract
This report describes a new set of macromolecular descriptors of relevance to protein QSAR/QSPR studies, protein's quadratic indices. These descriptors are calculated from the macromolecular pseudograph's alpha-carbon atom adjacency matrix. A study of the protein stability effects for a complete set of alanine substitutions in Arc repressor illustrates this approach. Quantitative Structure-Stability Relationship (QSSR) models allow discriminating between near wild-type stability and reduced-stability A-mutants. A linear discriminant function gives rise to excellent discrimination between 85.4% (35/41)and 91.67% (11/12) of near wild-type stability/reduced stability mutants in training and test series, respectively. The model's overall predictability oscillates from 80.49 until 82.93, when n varies from 2 to 10 in leave-n-out cross validation procedures. This value stabilizes around 80.49% when n was > 6. Additionally, canonical regression analysis corroborates the statistical quality of the classification model (Rcanc = 0.72, p-level <0.0001). This analysis was also used to compute biological stability canonical scores for each Arc A-mutant. On the other hand, nonlinear piecewise regression model compares favorably with respect to linear regression one on predicting the melting temperature (tm)of the Arc A-mutants. The linear model explains almost 72% of the variance of the experimental tm (R = 0.85 and s = 5.64) and LOO press statistics evidenced its predictive ability (q2 = 0.55 and scv = 6.24). However, this linear regression model falls to resolve t(m) predictions of Arc A-mutants in external prediction series. Therefore, the use of nonlinear piecewise models was required. The tm values of A-mutants in training (R = 0.94) and test(R = 0.91) sets are calculated by piecewise model with a high degree of precision. A break-point value of 51.32 degrees C characterizes two mutants' clusters and coincides perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutants' Arc homodimers. These models also permit the interpretation of the driving forces of such a folding process. The models include protein's quadratic indices accounting for hydrophobic (z1), bulk-steric (z2), and electronic (z3) features of the studied molecules. Preponderance of z1 and z3 over z2 indicates the higher importance of the hydrophobic and electronic side chain terms in the folding of the Arc dimer. In this sense, developed equations involve short-reaching (k < or = 3), middle- reaching (3 < k < or = 7) and far-reaching (k= 8 or greater) z1, 2, 3-protein's quadratic indices. This situation points to topologic/topographic protein's backbone interactions control of the stability profile of wild-type Arc and its A-mutants. Consequently, the present approach represents a novel and very promising way to mathematical research in biology sciences.
Highlights
Proteins are the major functional molecules of life whose properties are so useful that we employ them as therapeutic agents, catalysts, and materials
This report describes a new set of macromolecular descriptors of relevance to protein QSAR/QSPR studies, protein’s quadratic indices
The data derived from protein engineering experiments are being used, to benchmark the computer calculations that will eventually be used for designing rational changes in protein stability and allow the modest redesign of proteins [1]
Summary
Proteins are the major functional molecules of life whose properties are so useful that we employ them as therapeutic agents, catalysts, and materials. The ultimate goal of protein science is to be able to predict the structure and activity of a protein de novo and how it will bind to ligands When this is achieved, we will be able to design and synthesize novel catalysts, materials, and drugs that will eliminate disease and minimize ill health [1]. Theoreticians are able to simulate many aspects of folding and catalysis with increasing detail and reliability [3,4] In these studies, the data derived from protein engineering experiments are being used, to benchmark the computer calculations that will eventually be used for designing rational changes in protein stability and allow the modest redesign of proteins [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.