Abstract

We studied the signal pathways for regulation of serine/threonine protein kinase Akt in Jurkat cells that had been treated with 4-hydroxynonenal (HNE) for caspase-dependent apoptosis induction. Treatment of cells with HNE led to a decrease in the level of Akt activity due to the dephosphorylation at Ser473, a major regulatory phosphorylation site. HNE-mediated dephosphorylation of Akt was prevented by a protein phosphatase 2A (PP2A) inhibitor, okadaic acid, and by a caspase-3 inhibitor, DEVD-CHO. HNE treatment resulted in an increase in the total level of PP2A activity, release of active tyrosine-dephosphorylated PP2A from the cytoskeleton and PP2A-Akt association, which were all dependent on caspase-3 activation. These results suggest that the level of PP2A activity is at least in part determined by its tyrosine phosphorylation, which is dually controlled by okadaic acid-sensitive phosphatases and protein-tyrosine kinases. Possibly underlying the mechanism of caspase-mediated activation of PP2A, HNE treatment resulted in downregulation of the activity of Src kinase, as a representative caspase-sensitive kinase to phosphorylate PP2A at tyrosine. In addition, activated caspase-3 partially cleaved Akt at a late stage of the apoptosis. These results indicate the existence of two distinct caspase-dependent signal pathways for downregulation of Akt that works as a mechanism of positive feedback regulation for HNE-triggered apoptotic signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.