Abstract

BackgroundHepatocellular carcinoma (HCC) remains a major public health problem worldwide. The identification of effective chemotherapeutic targets for advanced HCC patients is urgently required. In this study, we investigated the role of protein phosphatase 2A-B55δ subunit (PP2A-B55δ, encoded by the PPP2R2D gene) and related mechanisms affecting chemotherapy sensitivity of HCC.MethodsExperimental approaches for measuring the levels of PPP2R2D mRNA and B55δ protein in HCC included bioinformatics analyses, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), immunofluorescence and immunohistochemistry assays. Cell cycle, migration, colony formation, apoptosis, and cell proliferation assays in stable PPP2R2D-knockdown and -overexpression cell lines in vitro, and tumorigenicity assays in vivo, were performed to explore the function of B55δ in cisplatin (cDDP) chemotherapy of HCC. Bioinformatics prediction, luciferase reporter assays, qRT-PCR, WB, and cell cycle analyses were used to reveal the regulatory relationship between microRNA-133b (miR-133b) and PPP2R2D expression. miR-133b mimic and inhibitor were used to elucidate the regulatory mechanism.ResultsOur studies showed that PPP2R2D expression was down-regulated in both HCC tumors and HCC cell lines. Treatment with cDDP increased the amount of B55δ protein. Artificially increasing the expression of B55δ counteracted cyclin-dependent kinase 1 activation, modulated transitions of the cell cycle, and increased the suppressive effect of cDDP on cell migration, colony formation, apoptosis, and proliferation in vitro and tumor growth in vivo, thus enhancing therapeutic efficiency. In contrast, knockdown of B55δ partially inhibited the effect of cDDP chemotherapy. miR-133b was shown to regulate PPP2R2D expression by binding to the 3’-untranslated region of PPP2R2D mRNA. The miR-133b/PPP2R2D signaling pathway affects the effectiveness of cDDP chemotherapy.ConclusionsPP2A-B55δ, regulated by miR-133b, enhances the sensitivity of HCC to cDDP chemotherapy. Our data indicate that PP2A-B55δ might be a novel and attractive target for increasing chemotherapy sensitivity of HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0341-z) contains supplementary material, which is available to authorized users.

Highlights

  • Hepatocellular carcinoma (HCC) remains a major public health problem worldwide

  • We explored the role of phosphatase 2A (PP2A)-B55 subunit δ isoform (B55δ) both in regulating the cell cycle, migration, colony formation, apoptosis, and proliferation of human hepatoblastoma HepG2 cells and in tumor growth in xenograft mice in the presence of cDDP, and we investigated the details of the microRNA-133b/gene encoding PP2A-B55δ (PPP2R2D) signaling pathway

  • Kaplan-Meier survival curves shown in Fig. 1b indicated that the 5-year overall survival rates of HCC patients (Accession No.: GSE54236) [16] with low PPP2R2D expression was lower than that with high PPP2R2D expression

Read more

Summary

Introduction

The identification of effective chemotherapeutic targets for advanced HCC patients is urgently required. We investigated the role of protein phosphatase 2A-B55δ subunit (PP2A-B55δ, encoded by the PPP2R2D gene) and related mechanisms affecting chemotherapy sensitivity of HCC. Seventy to 90 % of primary liver cancers are hepatocellular carcinoma (HCC). It is necessary to identify targets for enhancing the sensitivity to chemotherapeutic management of HCC. The interaction between B55δ and cyclin-dependent kinase 1 (CDK1) is reported to play a critical role in cell cycle progression [5]. It is still unclear whether B55δ enhances chemotherapy sensitivity of HCC cells by regulating the cell cycle

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.