Abstract

Following 16, 40 and 64 h exposure to 0.33 M NaCl given after 8 h water imbibition, lentil seeds showed a gradual decrease of germination upon their transfer to water. These salt related changes were accompanied by modifications in the protein patterns of embryo axes as revealed by two-dimensional electrophoresis separation and by the computer image analysis of protein spots. In comparison with 8 h water imbibed seeds, prominent proteins comprised between the 5.1 - 7.6 pH isoelectric point in the first dimension and 75 - 50 kDa molecular mass in the second dimension showed a significant increase in their abundance as salt exposure increased. On transfer to water to complete germination, the content of many of these proteins decreased at 24h in 2 - 3 cm length embryo axes in comparison with the corresponding embryo axes of seeds continuously imbibed in water for 24 h. Some groups of proteins ranging between 15.5 - 17.3 kDa, already present after 8 h water imbibition, were not detectable after 24 h but were expressed in seeds exposed to NaCl and transferred to water for 24 h. Up- and down-regulated proteins in lentil embryo axes, imbibed under non-lethal salt stress conditions, have been tentatively identified by comparison with the protein map of germinating seeds of the model plant Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.