Abstract

The hydrazinolysis of S-cyanylated peptide provides an alternative way to afford protein α-hydrazide—a key reagent used in the native chemical ligation (NCL)—without the aid of any inteins or enzymes. The currently used non-selective S-cyanylation, however, allows no other cysteine in the protein besides the one at the cleavage site. Herein, we report a regioselective S-cyanylation and hydrazinolysis strategy achieved via the fusion of a tetracysteine tag to the C-terminal of the protein of interest, and we term it tetracysteine enabled protein ligation (TCEPL). While highly selective, the strategy is applicable for proteins expressed as inclusion bodies, and this was showcased by the efficient semi-synthesis of an iron-sulfur protein—rubredoxin and the catalytic and hinge domains of matrix metalloprotease-14 (MMP-14) containing 207 amino acid residues. Furthermore, the TCEPL strategy was exploited for protein C-terminal labeling with amino reagents bearing a variety of functional groups, demonstrating its versatility and generality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.