Abstract

The dihydrofolate reductase (DHFR) domain of P. falciparum is one of the few well defined targets in malarial chemotherapy. The enzyme catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH) dependent reduction of dihydrofolate to tetrahydrofolate. Protein-ligand interactions were studied using DHFR protein 2BL9, extracted from PDB to evaluate the strength of affinity of various molecules towards ligand binding site and to study the extent of correlation between experimental values and computational dock scores. AutoDock runs resulted in binding energy scores from -7.14 to -10.72 kcal/mol. Among the five inhibitors (Bioorganic and Medicinal Chemistry Letters 15 2005 531-533) selected for docking studies, an excellent correlation was observed in all cases, for instance, experimentally reported most active molecule 2a (MIC: 1µg/ml) showed a high dock score (-10.72 kcal/mol) than the remaining inhibitors. Therefore, molecular docking using AutoDock suggests the importance of evaluating the prediction accuracy of various molecules as evidenced by a correlation coefficient of 0.961 between experimental activities and AutoDock binding energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.