Abstract

Since protein kinase-dependent modulation of motoneuronal excitability contributes to adaptive changes in breathing, we hypothesized that cGMP-dependent pathways activating protein kinase G (PKG) modulate motoneuronal inspiratory drive currents and long-term plasticity. In a medullary slice preparation from neonatal rat (postnatal days 0-4) generating spontaneous respiratory-related rhythm, hypoglossal (XII) motoneuronal inspiratory drive currents and respiratory-related XII nerve activity were recorded. Focal application of a PKG activator, 8-bromoguanosine-3',5'-cyclomonophosphate (8-Br-cGMP), to voltage-clamped XII motoneurones decreased inspiratory drive currents. In the presence of tetrodotoxin (TTX), 8-Br-cGMP decreased the exogenous postsynaptic inward currents induced by focal application of AMPA. Intracellular dialysis of XII motoneurones with an inhibitory peptide to PKG (PKGI) increased endogenous inspiratory-drive currents and exogenous AMPA-induced currents. Application of 8-Br-cGMP with PKGI had no further effect on spontaneous or evoked currents, confirming that the observed effects were induced by PKG. However, PKG differentially increased longer-term plasticity. Three 3 min applications (separated by 5 min) of the α(1)-adrenergic agonist phenylephrine (PE) in combination with 8-Br-cGMP yielded greater in vitro long-term facilitation than PE alone. These data indicate the presence of a cGMP/PKG-dependent signalling pathway in XII motoneurones that modulates inspiratory drive currents and plasticity of XII motoneurones, possibly contributing to their adaptation during physiological challenges, such as sleep and exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.