Abstract
Coronavirus disease-19 (COVID-19) is correlated to a severe condition caused by a cytokine storm during which numerous proinflammatory cytokines, including interleukin-6 (IL-6) are released. IL-6 is a critical driver in the COVID-19 inflammatory state, and the inhibition is considered a potential treatment approach to prevent serious complications. Meanwhile, Melaleuca cajuputi is a plant with antibacterial, antiviral, anti-inflammatory, and antioxidant activities. Therefore, this aimed to investigate the anti-inflammatory potential of M. cajuputi in silico. Extraction of leaves was conducted by using 96% ethanol, followed by fractionation to obtain active compounds. Subsequently, LC/MS and GC/MS analyses were performed to obtain active compound profiling. Protein-protein interaction (PPI), as well as molecular docking and dynamic analyses, were performed to examine interaction of active compounds of M. cajuputi with IL-6. The results showed that 30 protein nodes played a significant role in COVID-19 cytokine storm and eight active compounds had interactions with IL-6. Among the active compounds, pinostrobin chalcone had the best delta G interaction with IL-6. In conclusion, M. cajuputi has potential activity as an anti-inflammatory agent against COVID-19.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have