Abstract

In the present study, poly (lactic-co-glycolic) acid (PLGA) was used as a carrier for a divalent fusion DNA vaccine encoding the Aeromonas veronii outer membrane protein A (ompA) and Aeromonas hydrophila hemolysins (hly) protein. The recombinant pET-28a-ompA-hly was constructed by inserting the ompA gene and hly gene into a pET-28a expression vector. Loading of ompA-hly antigen module on PLGA microspheres were accomplished by water-in-oil-in-water (W/O/W) encapsulation. The molecular weight and specificity of pET-28a-ompA-hly were detected by dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The microspheres showed an average particle size of 100–150μm and a loading efficiency (LE) of 68.8%. Mice received ompA-hly antigen-loaded PLGA microspheres by intraperitoneal or intragastric administration mounted strong and sustained IgG response, which was significantly higher (p<0.05) than those achieved by pET-28a-ompA-hly antigen alone. OmpA-hly antigen-loaded PLGA microsphere vaccine uniquely conferred a long lasting (30 days) sterile immunity against challenge infection. Results indicated that ompA-hly antigen-loaded PLGA microsphere vaccine is a qualified candidate vector system for sterile protective immunity against A. hydrophila and A. veronii infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.