Abstract
Among polyphenolic phytoconstituents with anticancer properties, Ellagic acid (EA) is widely reported for its translational potential in vitro but efficient in vivo delivery of EA has been a challenge. We, for the first time, used a tween 80 coated nano delivery of Ellagic acid to evaluate its preclinical efficacy in vitro and in vivo for breast cancer.To overcome the challenges of in vivo delivery, two batches of chitosan-based nanoformulations of EA (with and without tween 80 coating) were prepared by the ionotropic gelation method. The nanoformulations were characterized and further evaluated in vitro against breast cancer cells (MCF7) and in vivo with EAC tumor-bearing mice for establishing their anticancer efficacy compared to Ellagic acid alone. A quantitative simulation study was undertaken to understand if the observed antitumor efficacy is due to the synergistic efficacy of the Chitosan-Ellagic acid combination.Results revealed that nanoformulations consist of good nano-sized encapsulation of EA and showed good drug entrapment-release capacity. Nano-encapsulated EA is biocompatible and exhibited higher cytotoxicity in vitro compared to EA alone. Similarly, significantly higher tumor regression was observed in nano-EA treated mice compared to EA alone, and best efficacy was observed with the nanoformulation with tween 80 coating. Furthermore, nanoformulations showed higher apoptosis in tumor tissues with no significant tissue toxicity in vital organs.We report synergism of Chitosan-Ellagic acid combination in the tween 80 coated nanoparticles of Ellagic acid resulting in enhanced anti-breast tumor efficacy that may be of translational value for other tumor types, too.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.