Abstract

Sulfated chitooligosaccharides (COS-S) with different degrees of substitution (DS) were obtained by the chlorosulfuric acid/pyridine method. Protective effects of COS-S against hydrogen peroxide (H2O2)-induced damage were investigated in pancreatic β-cells MIN6 cell line. The cell viability, morphology, insulin contents, malondialdehyde (MDA) inhibition, lactate dehydrogenase (LDH) release and the levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidise (GPx) were evaluated under oxidative damage by 150μM H2O2 for 6h. COS-S did not show any harmful or inhibitory effect on cell growth at concentrations ranging from 0.1 to 0.5mg/ml. While COS-S could enhance the cell viability, decrease the production of ROS, and reduce the MDA level as well as LDH level in oxidative damaged β-cells by being an antioxidant. The underlining mechanisms of protective effects of COS-S are partly due to the enhancement of antioxidant enzyme activity and inhibition of intracellular ROS production, along with suppressing MIN6 cell apoptosis subsequent to the amelioration of ROS. Moreover, increased DS might contribute to the defense mechanisms against H2O2-induced oxidative damage in MIN6 cells. These results indicated that the antioxidant properties of COS-S hold great potential for the oxidative diseases treatment, and the sulfate content of polysaccharides made great role in regulating antioxidant activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.