Abstract

BackgroundEdible insects, including Oxya chinensis sinuosa Mishchenko (Oc), which is consumed as food in Asia, are considered as a human food shortage alternative, and also as a preventive measure against environmental destruction. Ultraviolet B (UVB) irradiation, which causes skin photodamage, is considered as an extrinsic skin aging factor. It reduces skin hydration, and increases wrinkle formation and reactive oxygen species (ROS) and inflammatory cytokine expression. Thus, the objective of this study was to investigate the anti-aging effects of an ethanol extract of Oc (Oc.Ex).MethodsA UVB-irradiated hairless mouse model was used to examine relevant changes in skin hydration, wrinkle formation, and skin epidermal thickness. Also, antioxidant markers such as superoxide dismutase (SOD) and catalase (CAT) were analyzed, and Oc. Ex skin protective effects against UVB irradiation-induced photoaging were examined by determining the levels of skin hydration factors.ResultsOc.Ex improved epidermal barrier dysfunctions such as increased transepidermal water loss (TEWL) and capacitance reduction in UVB-irradiated mice. It upregulated skin hydration-related markers, including hyaluronic acid (HA), transforming growth factor (TGF)-β, and pro-collagen, in UVB-irradiated mice, compared with the vehicle control group. It also reduced UVB-induced wrinkle formation, collagen degradation, and epidermal thickness. Additionally, it remarkably suppressed the increased expression of matrix metalloproteinases (MMPs), and restored the activity of SOD and CAT in UVB-irradiated mice, compared with the vehicle control group. Furthermore, Oc. Ex treatment downregulated the production of inflammatory cytokines and phosphorylation of the mitogen-activated protein kinases (MAPKs) signaling pathway activated by UVB irradiation.ConclusionThis study revealed that Oc. Ex reduced skin thickness and the degradation of collagen fibers by increasing hydration markers and collagen-regulating factors in the skin of UVB-irradiated mice. It also inhibited UVB-induced antioxidant enzyme activity and inflammatory cytokine expression via MAPK signaling downregulation, suggesting that it prevents UVB-induced skin damage and photoaging, and has potential for clinical development in skin disease treatment.

Highlights

  • Edible insects, including Oxya chinensis sinuosa Mishchenko (Oc), which is consumed as food in Asia, are considered as a human food shortage alternative, and as a preventive measure against environmental destruction

  • Evaluation of Oxya chinensis sinuosa Mishchenko extract on skin hydration factors To determine whether Oc

  • The results revealed that in the Ultraviolet B (UVB)-irradiated vehicle group, transepidermal water loss (TEWL) levels, which recovered after Oc

Read more

Summary

Introduction

Edible insects, including Oxya chinensis sinuosa Mishchenko (Oc), which is consumed as food in Asia, are considered as a human food shortage alternative, and as a preventive measure against environmental destruction. Ultraviolet B (UVB) irradiation, which causes skin photodamage, is considered as an extrinsic skin aging factor. It reduces skin hydration, and increases wrinkle formation and reactive oxygen species (ROS) and inflammatory cytokine expression. The process of skin aging can be classified as intrinsic or extrinsic aging [1]. Extrinsic aging induced by ultraviolet B (UVB) radiation causes skin alterations, including epidermal thickness, wrinkle formation, and matrix macromolecule degradation [2]. While skin moisture maintenance is essentially dependent on the stratum granulosum, HA binding with water is critically important in skin hydration retention in the dermis and the vital epidermis [6]. Skin hydration maintenance is important in skin aging prevention

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.