Abstract

Fucoxanthin (Fx) is a natural extract from marine seaweed that has strong antioxidant activity and a variety of other bioactive effects. This study elucidated the protective mechanism of Fx on alcoholic liver injury. Administration of Fx was associated with lower pathological effects in liver tissue and lower serum marker concentrations for liver damage induced by alcohol. Fx also alleviated oxidative stress, and lowered the level of oxides and inflammation in liver tissue. Results indicate that Fx attenuated alcohol-induced oxidative lesions and inflammatory responses by activating the nuclear factor erythrocyte-2-related factor 2 (Nrf2)-mediated signaling pathway and down-regulating the expression of the toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) signaling pathway, respectively. Our findings suggest that Fx can be developed as a potential nutraceutical for preventing alcohol-induced liver injury in the future.

Highlights

  • The liver is the main organ used for alcohol metabolism; alcohol damages liver cells, which can lead to alcoholic liver disease (ALD) [1]

  • Large amounts of alcohol in the body can be dehydrogenated into acetaldehyde and acetate under the catalysis of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) [7]

  • Regarding the relative liver weight (Figure 1D), except for the L-Fx group, there was no obvious difference between the Positive group, Fx groups and control group mice were given normal saline (Control) group, but the liver weight of these groups was significantly lower than those of the Model group, indicating that Fx may have a protective effect on liver tissue

Read more

Summary

Introduction

The liver is the main organ used for alcohol metabolism; alcohol damages liver cells, which can lead to alcoholic liver disease (ALD) [1]. Acute ALD refers to a disease caused by liver damage associated with heavy drinking over a short period [2,3]. ALD is a worldwide public health problem; its prevalence and morbidity have increased each year as a consequence of increased alcohol abuse rates, which damages human physical health [4,5]. Excessive drinking can cause liver damage to varying degrees, especially in the short term; a large amount of alcohol abuse, for instance, can cause severe liver damage [1,6]. Large amounts of alcohol in the body can be dehydrogenated into acetaldehyde and acetate under the catalysis of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.