Abstract

The effects of the antianginal and antiarrhythmic drug amiodarone on mitochondrial function and high-energy phosphate content were assessed during normothermic ischaemic cardiac arrest and reperfusion in Langendorff-perfused rat heart. Total ischaemia for 30 min at 37 degrees C produced highly significant changes in mitochondrial oxidative phosphorylation and high-energy phosphate content. Pretreatment of the rats with one single dose of amiodarone (20 mg/kg i.v., 30 min before killing) markedly attenuated the deleterious effect of ischaemia on mitochondrial function and slightly reduced ATP depletion. In normally perfused hearts, amiodarone pretreatment did not modify any parameter of mitochondrial respiratory function nor did it influence high-energy phosphate or glycogen content. After reperfusion for 15 min, amiodarone-treated hearts showed improved recovery of mitochondrial oxidative phosphorylation and tissue high-energy phosphate content as compared to control hearts. Pretreatment of hearts with amiodarone did not reduce ischaemia-induced leakage of total adenylic nucleotides but highly significantly reduced lactate dehydrogenase release during reperfusion. These results indicate that amiodarone could exert substantial protection on the infarcting myocardium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.