Abstract
The hydrolysis of sodium borohydride (NaBH4) over catalysts is a promising method to produce hydrogen. Although Co-based catalysts exhibit high activity for NaBH4 hydrolysis, they are still far from satisfying practical applications, especially their poor durability in alkaline media. Herein, a carbon shell structure was designed and synthesized to improve the stability of the mixture of Co0 and CoxOy nanofilms (Co/CoxOy@C) during NaBH4 hydrolysis via a facile polymerization-pyrolysis strategy with Co/CoxOy nanofilms as the precursor. As a result, the Co/CoxOy@C catalyst can achieve a remarkable H2 generation rate of 4348.6 mL min−1 gCo−1 with a low activation energy of 43.6 kJ mol−1, which is superior to most previously reported catalysts. Moreover, the catalyst shows high stability with an H2 generation-specific rate of 79% after five cycles. The excellent performance of carbon substrate can well prevent the agglomeration of Co-based nanoparticle and improve the corrosion resistance of the active Co to BO2− and OH−. This work would widen the road for the preparation of nanoconfined catalysts, which has prospective application potentials for H2 production from NaBH4 hydrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.