Abstract

Purpose: An ethanolic extract of Nigella sativa L. (EE-NS) was investigated for its antioxidant properties and radioprotective effects against γ-radiation-induced oxidative damage.Materials and methods: The radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), deoxyribose degradation and plasmid relaxation assays in a cell-free system. DNA damage studies were performed using a single cell gel electrophoresis (SCGE) assay and micronuclei (MN) formation. Moreover, the alterations in lipid peroxidation and antioxidant enzymes were measured by biochemical methods.Results: EE-NS showed significant free radical scavenging and protection against DNA damage in cell free systems. Ex vivo treatment of mouse splenic lymphocytes with an ethanolic extract of N. sativa 1 h prior to irradiation (2 Gy) showed significant prevention of the formation of lipid-peroxides and intracellular reactive oxygen species (ROS), which correlated with radiation-induced apoptosis. Moreover, radiation-induced DNA damage was significantly prevented in splenocytes pre-treated with EE-NS. Swiss albino mice fed orally with the different doses of EE-NS (0–100 mg/kg bw) for five consecutive days followed by 2 Gy whole body irradiation (WBI) showed significant protection against oxidative injury to spleen and liver as measured by lipid peroxidation and the activity of antioxidant enzymes. These results were correlated with the prevention of DNA damage as measured by bone marrow micronuclei assay. Our results suggest that oral feeding of extract resulted in increased survival in mice exposed to WBI (7.5 Gy).Conclusion: The results obtained from the different experimental systems suggest the radioprotective ability of EE-NS involving prevention of radiation-induced oxidative damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.