Abstract

AbstractCryptographic algorithms embedded on physical devices are particularly vulnerable to Side Channel Analysis (SCA). The most common countermeasure for block cipher implementations is masking, which randomizes the variables to be protected by combining them with one or several random values. In this paper, we propose an original masking scheme based on Shamir’s Secret Sharing scheme [22] as an alternative to Boolean masking. We detail its implementation for the AES using the same tool than Rivain and Prouff in CHES 2010 [16]: multi-party computation. We then conduct a security analysis of our scheme in order to compare it to Boolean masking. Our results show that for a given amount of noise the proposed scheme - implemented to the first order - provides the same security level as 3rd up to 4th order boolean masking, together with a better efficiency.KeywordsSide Channel Analysis (SCA)MaskingAES ImplementationShamir’s Secret SharingMulti-party computation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.