Abstract

Cisplatin is a highly effective chemotherapeutic drug acting as a DNA-damaging agent that induces apoptosis of rapidly proliferating cells. Unfortunately, cellular resistance still occurs. Mutations in p53 in a large fraction of tumor cells contribute to defects in apoptotic pathways and drug resistance. To uncover new strategies to eliminate tumors through a p53-independent pathway, we established a simplified model devoid of p53 to study cisplatin-induced regulated cell death, using the yeast Saccharomyces cerevisiae. We previously showed that cisplatin induces an active form of cell death accompanied by DNA condensation and fragmentation/degradation, but no significant mitochondrial dysfunction. We further demonstrated that proteasome inhibition, either with MG132 or genetically, increased resistance to cisplatin. In this study, we sought to determine how proteasome inhibition is important for cisplatin resistance by analyzing how it affects several phenotypes associated with the DNA damage response. We found MG132 does not seem to affect the activation of the DNA damage response or increase damage tolerance. Moreover, central modulators of the DNA damage response are not required for cisplatin resistance imparted by MG132. These results suggest the proteasome is involved in modulation of cisplatin toxicity downstream of DNA damage. Proteasome inhibitors can sensitize tumor cells to cisplatin, but protect others from cisplatin-induced cell death. Elucidation of this mechanism will therefore aid in the development of new strategies to increase the efficacy of chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.