Abstract
Prostaglandins (PGs), particularly PGE2, are produced by bone and have powerful effects on bone metabolism. PGs have an initial, transient, direct inhibitory effect on osteoclast function. However, the major long-term effect in bone organ culture is to stimulate bone resorption by increasing the replication and differentiation of new osteoclasts. PGs also stimulate osteoclast formation in cell culture systems. Stimulation of osteoclastic bone resorption may be important in mediating bone loss in response to mechanical forces and inflammation. PGs have a biphasic effect on bone formation. At relatively low concentrations or in the presence of glucocorticoids, the replication and differentiation of osteoblasts is stimulated and bone formation is increased. This increase is associated with an increase in production of insulin-like growth factor-I (IGF-I). However, at high concentrations or in the presence of IGF-I, PGE2 inhibits collagen synthesis. In osteoblastic cell lines this inhibition can be shown to occur at the level of transcription of the collagen gene. The stimulatory effect on bone formation has been demonstrated when PGs are administered exogenously, but it is not clear how endogenous PG production affects bone formation in physiological or pathologic circumstances. The production of PGs in bone is highly regulated. The major source appears to be cells of the osteoblast lineage. A major site of regulation is at the level of the enzyme PG endoperoxide synthase (cyclooxygenase or PGH synthase). PGE2 production and PGH synthase mRNA are increased by PTH and interleukin-1 and decreased by estrogen. Glucocorticoids probably act by a different mechanism, decreasing either arachidonic acid or PGH synthase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.