Abstract

The creatine kinase isoenzymes play an important role in maintaining ATP levels in some cell types during times of high energy demand. We have previously shown in primary cell cultures from rat brain that glial cells express much higher levels of brain creatine kinase (CKB) mRNA than neurons. In a separate earlier study we observed that transcription of CKB mRNA in glial cells can be stimulated by a forskolin-mediated increase in cAMP via a pathway involving protein kinase A (PKA). In this report, we show that the level of CKB mRNA in human U87 glioblastoma cells can be increased by either prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), or cholera toxin (an activator of G alpha s proteins). The induction of CKB mRNA occurs rapidly (with maximal induction after 6 h), is at the level of transcription, and is mediated specifically through PKA. In addition, the results indicate that both PGE1 and PGE2 use the same or related signal transduction pathways to increase CKB transcription. These results suggest that in glial cells CKB mRNA can be regulated by extracellular signals acting through G-protein-coupled receptors. This study may contribute to an understanding of the mechanisms underlying the previously-reported, early postnatal increase in CKB enzyme activity in rat brain. The results are also discussed with regard to the potential involvement of the expression of prostaglandins and CKB during hypoxia and ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.