Abstract

The gamma-ray line emission from individual type I and type II supernovae are studied using numerical simulations and photon propagation codes to predict the flux levels and line shapes. For both types, the gamma ray lines with the highest flux from an individual event are the 0.847 and 1.238 MeV lines from the Ni-56 to Co-56 to Fe-56 decay chain. For type I supernovae, the 0.847 MeV line peaks at about 70 days after event onset. The historical record indicates an approximate discovery rate of once in 10 years for balloon-borne instruments, once in two to three years for the Gamma-Ray Observatory, and once in one to two years for a proposed space mission. The 0.847 MeV line flux from type II supernovae peaks at about 600 days after event onset at a low level which restricts observations to the events in the Galaxy and its nearest neighbors. The expected line shape is narrower than for type I supernovae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.