Abstract

Emotion is an important element in expressive speech synthesis. Unlike traditional discrete emotion simulations, this paper attempts to synthesize emotional speech by using strong, medium, and weak classifications. This paper tests different models, a linear modification model (LMM), a Gaussian mixture model (GMM), and a classification and regression tree (CART) model. The linear modification model makes direct modification of sentence F0 contours and syllabic durations from acoustic distributions of emotional speech, such as, F0 topline, F0 baseline, durations, and intensities. Further analysis shows that emotional speech is also related to stress and linguistic information. Unlike the linear modification method, the GMM and CART models try to map the subtle prosody distributions between neutral and emotional speech. While the GMM just uses the features, the CART model integrates linguistic features into the mapping. A pitch target model which is optimized to describe Mandarin F0 contours is also introduced. For all conversion methods, a deviation of perceived expressiveness (DPE) measure is created to evaluate the expressiveness of the output speech. The results show that the LMM gives the worst results among the three methods. The GMM method is more suitable for a small training set, while the CART method gives the better emotional speech output if trained with a large context-balanced corpus. The methods discussed in this paper indicate ways to generate emotional speech in speech synthesis. The objective and subjective evaluation processes are also analyzed. These results support the use of a neutral semantic content text in databases for emotional speech synthesis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.