Abstract

Propylsulfonic acid functionalized Santa Barbara Amorphous-15 (SBA-15–Pr–SO3H) catalyst has been synthesized using a surface modification of mesoporous SBA-15 via the one-pot co-condensation method. The synthesized SBA-15–Pr–SO3H has been characterized by peculiar characterization techniques such as small- and wide-angle XRD, SEM–EDX, TEM, TG–DTA, acidity, FT-IR, Py-FT-IR and BET surface area analysis. The catalytic activity of synthesized catalyst has been studied towards solvent-free MW irradiation for the green and rapid synthesis of multi-substituted imidazoles, [2,4,5-triphenyl-1(H)-imidazole (tri-imidazole) and 1-benzyl-2,4,5-triphenyl-1H-imidazole (tetra-imidazole)]. The SBA-15–Pr–SO3H catalyst was found to be an efficient and recyclable solid acid catalyst and this solvent-free MW protocol afforded products in good to excellent yields of both, tri and tetra imidazoles (> 95%) within shorter reaction time (3 min) at 600 W as compared to the SBA-15 and other existing protocols. The applicability of this protocol was further explored by conducting the experiments in the presence of varied solvents and substituted aldehydes to generate a library of both, tri- and tetra-imidazole scaffolds. The catalyst was found to be reusable up to several runs without loss of its catalytic activity. This report allows the rapid and scalable access to a variety of multi-substituted imidazoles using SBA-15–Pr–SO3H, as heterogeneous catalyst. SBA-15–Pr–SO3H catalyzed solvent-free MW assisted green synthesis of multi-substituted imidazoles via MCRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.