Abstract
A semiempirical approach developed to predict the viscoelastic response of a binder in repeated creep recovery tests is described. This model provides an avenue to predict the rut resistance ( R) as a function of loading (time and load) and temperature from data at a single frequency or frequency sweeps when needed. Thus, it can be used to develop a grading procedure for asphalt binders that not only accurately captures the delayed elasticity of modified binders but also accounts for the effect of traffic speed and traffic loading. The current Superpave binder specification attempts to capture the relative high-temperature performance (i.e., resistance to rut) of a binder via the inverse shear loss compliance, 1/ J” or G*/sin δ, at 10 rad/s. This parameter represents an improvement over the absolute viscosity because it is measured at a defined rate of deformation and accounts to some degree for the viscoelasticity of the binder via the phase angle. The parameter would correctly predict the relative R for an ideally viscous ( R ∞ η) material or an ideally elastic material ( R = ∞). However, there is mounting evidence that at phase angles between 40° and 75°, the parameter may not fully capture the viscoelastic nature of many modified binders. Various authors have shown that the R of mixtures can be well described by models using data from dynamic creep experiments, in which the mix is subjected to a load followed by a relaxation period. More recently, Bahia proposed to capture their high-temperature performance by using a similar technique on neat binders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.