Abstract

The reactions catalyzed by Mo enzymes each find the product differing from the substrate by two electrons and two protons (or some multiple thereof). The coordination chemistry of Mo suggests that there is a distinct relationship between acid-base and redox properties of Mo complexes, and that a coupled electron-proton transfer (to or from substrate) may be mediated by Mo in enzymes. Each of the Mo enzymes (nitrogenase, nitrate reductase, xanthine oxidase, aldehyde oxidase, and sulfite oxidase) is discussed; it is shown that a simple molecular mechanism embodying coupled proton-electron transfer can explain many key experimental observations. In view of this mechanism, the reasons for the use of Mo (from an evolutionary and chemical point of view) are discussed and other metals that may replace Mo are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.