Abstract

In this article, we propose a new image similarity measurement model (SMM) based hypergraph which is easy to calculate and applicable to various image processing application. Hypergraphs are now used in many domains such as chemistry, engineering and image processing. We present an overview of a hypergraph-based Image representation and the Image Adaptive Neighborhood Hypergraph (IANH). With the IANH it is possible to build a new powerful similarity measurement model. Although the new model is mathematically defined and no human visual system model is explicitly employed, our experiments on various image distortion types indicate the efficient of proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.