Abstract
Propofol, an intravenous anesthetic agent, exerts an anti-tumor peculiarity in multifarious tumors. Circular RNA hsa_circ_0000735 (circ_0000735) is involved in non-small cell lung cancer (NSCLC) progression. The purpose of this study is to investigate whether propofol can curb NSCLC progression via regulating circ_0000735 expression. Cell viability, proliferation, apoptosis, and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, flow cytometry, and transwell assays. Evaluation of protein levels was performed using western blotting or immunohistochemistry. Detection of circ_0000735 in tissue samples and cells was carried out using a real-time quantitative polymerase chain reaction. The molecular mechanisms associated with circ_0000735 were predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. The relationship between propofol and circ_0000735 in vivo was verified by xenograft models. The results showed that circ_0000735 was overexpressed in NSCLC samples and cells. Propofol treatment overtly decreased circ_0000735 expression in NSCLC cells and repressed NSCLC cell viability, proliferation, invasion, and facilitated NSCLC cell apoptosis, but these effects mediated by propofol were counteracted by circ_0000735 overexpression. Circ_0000735 functioned as a miR-153-3p sponge and regulated integrin-β1 (ITGB1) expression via adsorbing miR-153-3p. ITGB1 overexpression reversed circ_0000735 silencing-mediated effects on NSCLC cell viability, proliferation, invasion, and apoptosis. In conclusion, propofol restrained NSCLC growth by downregulating circ_0000735, which functioned as a miR-153-3p sponge and regulated ITGB1 expression via adsorbing miR-153-3p. This study provides evidence to support that propofol curbs NSCLC progression by regulating circRNA expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.