Abstract

The anesthetic propofol is thought to induce rapid hypnotic sedation by potentiating γ-aminobutyric acid receptor (GABAAR) activity. Little is known about the molecular mechanisms of propofol in modulating inhibitory synaptic transmission. We aimed to investigate the role of propofol in modulating surface expression of GABAARs. C57BL/6 mice received an intraperitoneal injection of propofol. Hippocampal pyramidal neurons were prepared from embryonic day-18 mice and were treated with propofol. Proteins on the plasma membrane were analyzed using cell surface biotinylation, immunoblotting and enzyme-linked immunosorbent assay. Electrophysiological activities were recorded from hippocampal cells in acute brain slices of mice. The interaction between GABAARs and clathrin adaptor protein 2 was assessed by immunoprecipitation. Phosphorylation of GABAARs was shown by in vitro kinase assay. Propofol facilitated membrane accumulation of GABAARβ3 subunits. Propofol mediated phosphorylation of GABAARβ3 by protein kinase Cε which blocked the interaction between GABAARβ3 and the β-adaptin subunit of adaptor protein 2, resulting in an inhibition of the receptor endocytosis in hippocampal pyramidal neurons. Coincident with increased GABAARs surface level, propofol enhanced evoked and miniature synaptic GABA receptor currents. This study offers new insight on the regulatory mechanism of propofol in inhibiting neuronal excitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.