Abstract

We used the single-microelectrode voltage-clamp technique to record ionic currents from pancreatic beta-cells within intact mouse islets of Langerhans at 37 degrees C, the typical preparation for studies of glucose-induced "bursting" electrical activity. Cells were impaled with intracellular microelectrodes, and voltage pulses were applied in the presence of tetraethylammonium. Under these conditions, a voltage-dependent Ca2+ current (I(Cav)), containing L-type and non-L-type components, was observed. The current measured in situ was larger than that measured in single cells with whole-cell patch clamping, particularly at membrane potentials corresponding to the action potentials of beta-cell electrical activity. The temperature dependence of I(Cav) was not sufficient to account for the difference in size of the currents recorded with the two methods. During prolonged pulses, the voltage-dependent Ca2+ current measured in situ displayed both rapid and slow components of inactivation. The rapid component was Ca2+-dependent and was inhibited by the membrane-permeable Ca2+ chelator, BAPTA-AM. The effect of BAPTA-AM on beta-cell electrical activity then demonstrated that Ca2+-dependent inactivation of I(Cav) contributes to action potential repolarization and to control of burst frequency. Our results demonstrate the utility of voltage clamping beta-cells in situ for determining the roles of ion channels in electrical activity and insulin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.