Abstract

The recently developed perturbation theory of transit-time interactions between particles and coherent wave packets in magnetized plasmas is applied to particular field structures. Limits of validity are determined by comparison with test-particle simulations, showing that the theory is accurate everywhere except near certain well-determined resonances, for wave fields exceeding a characteristic threshold, and for particles below a particular velocity. The properties of transit-time interactions in magnetized plasmas are investigated in detail to determine their dependence on the fields and parameters of the particle motion. Resonant particle scattering is found to occur at low particle velocities when the frequency of the coherent wave packet is an integer multiple of the gyrofrequency. Two different types of resonant transit-time dissipation are also observed: one arises from transient cyclotron acceleration in the localized wave packet, the other from beating between the gyration of the particles and the oscillation of the wave packet field. Both effects involve an interplay between the field geometry and resonant oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.