Abstract
Introduction of algorithmic damping by increasing the parameter values in the Newmark algorithm leads to undesirable low-frequency damping and reduced order of accuracy. It is demonstrated, how these effects can be removed by introducing an extra damping term in the form of a first order linear filter. When the linear filter is discretized in time, the state variable associated with the filter can be eliminated, leading to a weighted average of the equations of motion at two consecutive times. The filter procedure contains the known versions of alpha weighted Newmark methods as special cases, but gives a different and improved weighting of the excitation terms. A complete analysis of the properties of the algorithm when used on linear systems is given, including the frequency response properties. It is demonstrated that the effect of ‘overshoot’ is the consequence of a conservation relation that operates on a modified form of the mechanical energy of the system, and analytic results are presented for the magnitude of the effect. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.