Abstract

In this paper we characterize the existence of principal eigenvalues for a general class of linear weighted second order elliptic boundary value problems subject to a very general class of mixed boundary conditions. Our theory is a substantial extension of the classical theory by P. Hess and T. Kato (1980, Comm. Partial Differential Equations5, 999–1030). In obtaining our main results we must give a number of new results on the continuous dependence of the principal eigenvalue of a second order linear elliptic boundary value problem with respect to the underlying domain and the boundary condition itself. These auxiliary results complement and in some sense complete the theory of D. Daners and E. N. Dancer (1997, J. Differential Equations138, 86–132). The main technical tool used throughout this paper is a very recent characterization of the strong maximum principle in terms of the existence of a positive strict supersolution due to H. Amann and J. López-Gómez (1998, J. Differential Equations146, 336–374).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.