Abstract

The properties of the voltage- and time-dependent outward current in single smooth muscle cells isolated from the rat anococcygeus were studied. The outward current was activated by depolarizations to membrane potentials positive to -40 mV. Activation followed third order kinetics; at +20 mV, the time for the current to reach half its maximal amplitude was around 55 ms. The current inactivated with a time course that could best be described by a single exponential with a time constant around 1500 ms. The steady-state inactivation curve was voltage dependent over the range -110 to -30 mV, with a half-inactivation point of -67 mV. Recovery from inactivation followed an exponential time course with a time constant of around 770 ms at -90 mV. Deactivating tail current analysis revealed that a 10-fold change in the extracellular potassium ion concentration resulted in a 42 mV change in the reversal potential of the current. The current was blocked by 4-aminopyridine, tetraethylammonium, quinine and verapamil with IC50's--the concentrations producing 50% inhibition of the peak current--of 2 mM, 4 mM, 12 microM and 20 microM respectively. The current was not blocked by Toxin I (100 nM) or glibenclamide (10 microM). The current was still present in cells containing 5 mM EGTA; in these cells, replacing extracellular calcium with cadmium depressed the peak current by around 12%. This could be explained, at least in part, by a negative shift in the voltage dependence of inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.