Abstract

Subentropy is an entropy-like quantity that arises in quantum information theory; for example, it provides a tight lower bound on the accessible information for pure state ensembles, dual to the von Neumann entropy upper bound in Holevo's theorem. Here we establish a series of properties of subentropy, paralleling the well-developed analogous theory for von Neumann entropy. Further, we show that subentropy is a lower bound for min-entropy. We introduce a notion of conditional subentropy and show that it can be used to provide an upper bound for the guessing probability of any classical-quantum state of two qubits; we conjecture that the bound applies also in higher dimensions. Finally, we give an operational interpretation of subentropy within classical information theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.