Abstract

Nitrided surfaces and composition gradients in thin films exhibit interesting mechanical, electrical and optical properties. Therefore, silicon (Si) thin films were prepared by electron beam evaporation and nitrided by an inductively coupled rf plasma. The eects of successive plasma processing power on structural and optical properties as well as electrical resistivity were examined by dierent characterization techniques. The Si thin films were transformed gradually into nitrides compound thin films and the amount of nitrogen in the film increased with increasing the rf processing power. The Si nitrided films showed structural, optical and electrical properties that depend on the nitriding power. Increasing the rf plasma processing power caused amorphization, reduced the thickness, increased transmittance, increased resistivity and decreased the reflectance of the Si films. The electrical resistivity increased about eight orders of magnitude when the sample nitrided at 500 W. Dierent optical band gap were determined indicating the presence of dierent competing phases in the same film. The decrease in refractive index with plasma treatment power is attributed to the possible change in the bucking density as well as to the increase in the band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.