Abstract

Spinocerebellar ataxia type 6 (SCA6) is caused by polyglutamine expansion in P/Q-type Ca 2+ channels (Ca v2.1) and is characterized by predominant degeneration of cerebellar Purkinje cells. To characterize the Ca v2.1 channel with an SCA6 mutation in cerebellar Purkinje cells, we have generated knock-in mouse models that express human Ca v2.1 with 28 polyglutamine repeats (disease range) and with 13 polyglutamine repeats (normal range). Patch-clamp recordings of the Purkinje cells from homozygous control or SCA6 knock-in mice revealed a non-inactivating current that is highly sensitive to a spider toxin ω-Agatoxin IVA, indicating that the human Ca v2.1 expressed in Purkinje cells exhibits typical P-type properties in contrast to the previous data showing Q-type properties, when it was expressed in cultured cell lines. Furthermore, the voltage dependence of activation and inactivation and current density were not different between SCA6 and control, though these properties were altered in previous reports using non-neuronal cells as expression systems. Therefore, our results do not support the notion that the alteration of the channel properties may underlie the pathogenic mechanism of SCA6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.