Abstract

ABSTRACTHydrogels with electric responsive properties are gaining research focus due to increasing demand for miniaturized devices that can be precisely controlled using an external stimulus. Such systems are well suited due to their ability to expand and contract when in contact with different types of fluid. This study reports on the synthesis of a “smart” electroresponsive network, using a neutral, “non‐smart,” biocompatible hydrogel forming building block, Pluronic F127 (PF127), as a starting molecule. The PEO–PPO–PEO copolymer was modified with telechelic methacrylic end functionalities to form a triblock linear prepolymer with crosslinkable end groups (crosslinker). This bifunctional prepolymer, PF127 bismethacrylate (PF127BMA), was copolymerized covalently with anionic methacrylic acid sodium salt groups into a nonsoluble 3D hydrogel network in the presence of redox initiators. The polyelectrolyte domains in the pluronic hydrogel afforded controllable swelling capabilities with volumetric expansion exceeding 8500% in deionized water or 1400% in Krebs solution. The hydrogels were further assessed for their mechanical and electroactive response as a function of increasing acid salt content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41195.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.