Abstract

An estimator of a finite-dimensional parameter is said to be doubly robust (DR) if it imposes parametric specifications on two unknown nuisance functions, but only requires that one of these two specifications is correct in order for the estimator to be consistent for the object of interest. In this article, we study versions of such estimators that use local polynomial smoothing for estimating the nuisance functions. We show that such semiparametric two-step (STS) versions of DR estimators have favorable theoretical and practical properties relative to other commonly used STS estimators. We also show that these gains are not generated by the DR property alone. Instead, it needs to be combined with an orthogonality condition on the estimation residuals from the nonparametric first stage, which we show to be satisfied in a wide range of models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.