Abstract

Accurate knowledge of interaction potentials among the alkali-metal atoms and alkaline-earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali-metal atoms with the ${\mathrm{Ca}}^{+}$, ${\mathrm{Ba}}^{+}$, ${\mathrm{Sr}}^{+}$, and ${\mathrm{Ra}}^{+}$ alkaline-earth ions systematically, which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above-mentioned systems, which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random-phase approximation. We also compare our estimated polarizabilities with the other available theoretical and experimental results to verify accuracies in our calculations. In addition, we also evaluate the lifetimes of the first two low-lying states of the ions using the above matrix elements. Graphical representations of the dispersion coefficients versus $R$ are given among all the alkaline ions with Rb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.