Abstract
Crystal structures of lactose permease from Escherichia coli (LacY) exhibit two six-helix bundles with 2-fold pseudosymmetry separated by a large hydrophilic cavity. The cavity is open only on the cytoplasmic side and contains the side chains important for both sugar and H(+) binding at the apex in the middle of the protein; the periplasmic side is tightly closed. A plethora of biochemical and biophysical data strongly support an alternating access mechanism in which both the sugar- and H(+)-binding sites are exposed alternatively to either side of the membrane by reciprocal opening and closing of cytoplasmic and periplasmic cavities. Here we describe a unique mutation that results in an increase in sugar efflux. Asp240 (helix VII), which interacts with Lys319 (helix X), also comprises part of a salt-bridge/H-bond network that is critically involved in the mechanism of sugar/H(+) symport. The mutant, which contains Glu in place of Asp240, exhibits a marked decrease in active lactose transport and an enhanced rate of downhill lactose/H(+) efflux. Transport is increased to normal levels when the sugar concentration is increased 10-fold, consistent with the decrease in sugar affinity observed for this mutant. Taken as a whole, the results suggest that the primary defect induced by the mutation may involve a decrease in affinity for H(+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.