Abstract
Nonlinear vibrations in strained monoatomic carbon chains are studied with the aid of ab initio methods based on the density functional theory. An unexpected phenomenon of structural transformation at the atomic level above a certain value of the strain was revealed in cumulene chain (carbyne-β). This phenomenon is a consequence of stability loss of the old equilibrium atomic positions that occur at small strain, and appearance of two new stable equilibrium positions near each of them. The aforementioned restructuring gives rise to a softening of π-mode whose frequency tends to zero in a certain region of amplitudes when carbon atoms begin to vibrate near new equilibrium positions. This resembles the concept of soft mode whose “freezing” is postulated in the theory of phase transitions in crystals to explain the transitions of displacement type. The dynamical modeling of mass point chains whose particles interact via Lennard-Jones potential can approximate our ab initio results well enough. In particular, this study demonstrates an essential role of dipole-dipole interactions between carbon atoms in formation of their new equilibrium positions in the cumulene chain. We believe that computer studying of Lennard-Jones chains enables to predict properties of various dynamical objects in carbon chains (different nonlinear normal modes and their bushes, discrete breathers etc.) which then can be verified by ab initio methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.