Abstract
Abstract A scoring rule is proper if it elicits an expert’s true beliefs as a probabilistic forecast, and it is strictly proper if it uniquely elicits an expert’s true beliefs. The value function associated with a (strictly) proper scoring rule is (strictly) convex on any convex set of beliefs. This paper gives conditions on compact sets of possible beliefs Θ that guarantee that every continuous value function on Θ is the value function associated with some strictly proper scoring rule. Compact subsets of many parametrized sets of distributions on R k satisfy these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.