Abstract

If the lung is an elastic continuum, both longitudinal and transverse stress waves should be propagated in the medium with distinct velocities. In five isolated sheep lungs, we investigated the propagation of stress waves. The lungs were degassed and then inflated to a constant transpulmonary pressure (Ptp). We measured signals transmitted at locations approximately 1.5, 6, and 11 cm from an impulse surface distortion with the use of small microphones embedded in the pleural surface. Two transit times were computed from the first two significant peaks of the cross-correlation of microphone signal pairs. The "fast" wave velocities averaged 301 +/- 92, 445 +/- 80, and 577 +/- 211 (SD) cm/s for Ptp values of 5, 10, and 15 cmH2O, respectively. Corresponding "slow" wave velocities averaged 139 +/- 22, 217 +/- 36, and 255 +/- 89 cm/s. The fast waves were consistent with longitudinal waves of velocity [(K + 4G/3)/p]1/2, where bulk modulus K = 4 Ptp and shear modulus G = 0.7 Ptp. The slow waves were consistent with transverse (and/or Rayleigh) waves of velocity (G/p)1/2, with a G value of 0.9 Ptp. Measured values of K were 5 Ptp and values of G measured by indentation tests were 0.7 Ptp. Thus, stress wave velocities measured on pleural surface of isolated lungs correlated well with elastic moduli of lung parenchyma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.