Abstract

AbstractWe study the propagation of a finite‐amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a noncontact scanning 3‐D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classical nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We show that the numerical resolution of the 1‐D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. However, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which quantify not only classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.