Abstract

The shock propagation theory of Brinkley & Kirkwood (1947) is extended to provide a uniformly valid analytic solution of point-explosion problems both when the undisturbed medium is uniform and when it is stratified. This is achieved mainly by selecting the parameter expressing a similarity restraint in this theory such that initially it gives precisely the Taylor–Sedov solution, while asymptotically, in the weak regime, still retaining the well-known Landau–Whitham–Sedov form of the solution for shock overpressure. The shock overpressure, as calculated by the present method for spherical and cylindrical blast waves in the entire regime from the point of explosion to where they have become very weak, shows excellent agreement with that from the exact numerical solutions of Lutzky & Lehto (1968) and Plooster (1970). The solution for a spherical shock propagating in an exponential atmosphere stratified by a constant acceleration due to gravity also shows a good agreement with the exact numerical solution of Lutzky & Lehto.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.