Abstract
There are significant lithological and stress differences between continental shale layers, posing challenges for hydraulic fractures (HFs) to propagate through the formations, leading to weak fracture effects. To address this, this article adopts the finite element and cohesive force element methods to formulate a three-dimensional numerical model for hydraulic fracture (HF) propagation through layers, considering interlayer lithology and stress variations. The accuracy of the model was verified by physical experiments, and the one-factor analysis method was used to creatively reveal the complex mechanism of the effect of geological and engineering variables on the diffusion of HFs in continental shale reservoirs. The results show that high interlayer stress difference, high interlayer tensile strength difference, low interlayer Young’s modulus difference and large interlayer thickness are not conducive to the penetration of HFs, but increasing the injection rate and the viscosity of fracturing fluid can effectively improve the penetration of HFs. The influence ranking of each factor was determined using the grey relational degree analysis method: interlayer stress difference > interlayer Young’s modulus difference > interlayer tensile strength difference > interlayer thickness > injection rate > fracturing fluid viscosity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have