Abstract

The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well logging has a strong shielding effect on the electromagnetic waves, thus bringing some difficulties to the application of the frequency domain electromagnetic method in production well logging. According to the relation of the field source geometry to the ring around the mandrel, the general expressions of frequency domain electromagnetic responses in axially symmetrical layered conductive medium are deduced. The propagation effects caused by the low-frequency electromagnetic waves in cased hole are also analyzed. The distribution curves of eddy current density and magnetic flux density along the radial direction in the mandrel indicate that the eddy loss within the mandrel is proportional to the transmission signal frequency and the mandrel conductivity. The secondary field responses of different casing materials show that the transmission frequency has an important effect on the ability of electromagnetic waves penetrating the metal casing. The transmission frequency should be ultra-low in order to enable the electromagnetic signal to penetrate the casing easily. The numerical results of frequency responses for different casing physical parameters show that the casing thickness has a significant impact on the choice of the transmission frequency. It is also found that the effect of the casing radius on the transmission frequency can be neglected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.