Abstract

Although ascorbic acid (AA) is an antioxidant, under certain conditions it can facilitate oxidation, which may underlie the opposite actions of AA on brain excitability in distinct seizure models. Here, we investigated whether chronic AA administration during brain development alters cortical excitability as a function of AA dose, as indexed by cortical spreading depression (CSD) and by the levels of lipid peroxidation-induced malondialdehyde. Well-nourished and early-malnourished rats received per gavage 30, 60, or 120 mg/kg/d of AA, saline, or no gavage treatment (naïve group) at postnatal days 7–28. CSD propagation and malondialdehyde levels were analyzed at 30–40 days. Confirming previous observations, CSD velocities were significantly higher in the early-malnourished groups than in the well-nourished groups. AA dose was important: 30 mg/kg/d AA decelerated CSD and reduced malondialdehyde levels, whereas 60 mg/kg/d and 120 mg/kg/d accelerated CSD and augmented malondialdehyde levels compared with the corresponding saline and naïve groups. Our findings reinforce previous suggestion that AA acts as an antioxidant in the brain when administered at low doses, but as a prooxidant at high doses, as indicated by CSD propagation and malondialdehyde levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.