Abstract
Abstract We prove seven of the Rogers–Ramanujan-type identities modulo 12 that were conjectured by Kanade and Russell. Included among these seven are the two original modulo 12 identities, in which the products have asymmetric congruence conditions, as well as the three symmetric identities related to the principally specialized characters of certain level 2 modules of A 9 ( 2 ) {A_{9}^{(2)}} . We also give reductions of four other conjectures in terms of single-sum basic hypergeometric series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.